
Technical Design Document (TDD)
Document Revision Table

Version Description of Change Name Date

2.1 Editing pass, wrote notes for future changes Curley 3/24/2016

2.2 Alpha update Howell 4/14/2016

2.3 Editing pass Curley 4/16/2016

2.4 Editing pass Howell 4/28/2016

3.0 Proofreading pass for submission Curley 4/28/2016

       

       

 

Document Revision Table
Project Goals

Scope
Task Tiers
End Product (Tier 1)
End Product (Tier 2)

Principle Risks
Platform Risks
Engine Risks
Middleware Risks
Other Principle Risks

Deliverables
System Requirements

Target System
Minimum
Recommended

Development System
Resource Budget

Frame Time Budget
Memory Utilization Estimate
Assets Budgets Estimate
Art Assets Budgets Estimate

Technology Sources
Acquired

Art Creation
Level Design
Software Engineering
Audio
Miscellaneous

Components
Software Configuration Management

Naming Convention
Category/File Formats
Build Plan
Backup Routines

PC Images
Personal Backups

During the workday
At the end of the workday
Per Milestone

Version Control
Perforce File Structure

Perforce Tutorial
Connect to the Network Repository
Initial Check Out from the Network Repository into the Local Working Directory Repository
Updating to the Latest Files from the Network Repository
Adding a Single File to the Local Repository
Committing Files to the Network Repository
Handling Version Conflicts

Quality Assurance



Component Testing
Integration Testing

Useful Tutorials

Project Goals
Bullpup Games plans to build a networked First Person Shooter (FPS), Capture-the-Flag (CTF) style game in the Unreal 4 engine, supporting
two teams of four players (eight players total). The team aims to deliver two maps, each with a unique game mode: "Vendetta" (standard
CTF) and “Bootlegger” (neutral flag variant). Vendetta involves both teams owning one flag, and both teams trying to capture their opponents
flag. Bootlegger (neutral flag variant) is capture the flag with only one flag, but still two different bases.

Scope
Bullpup Games aims to deliver a product with all the features listed in End Product section. The project’s deadline is May 13.

The team will also deliver all required materials listed in the . The requirements in the document areTPG2/3 Project Requirements Document
as follows:

Network Server
A network server on which the game is played, supports up to 8 players.

Implement multiplayer Capture-the-Flag mechanics
The game will have basic capture the flag mechanics implemented for one of its two game modes.

Implement multiplayer Bootlegger mechanics
The game will have altered captures the flag mechanics implemented where there is one neutral flag which can be captured
by either team.

Integrate weapons
The game will have three weapons integrated by the programming team: Pistol, Tommy Gun, and Shotgun

Implement Main Menu
The game will have a main menu interface before gameplay starts where the player can navigate the pregame options. This
menu is where players host and join games.

Implement HUD
The game will have an in game heads up display (HUD) designed by the design team and implemented by the programming
team.

Integrate Sound
Any and all sound effects for guns and player interactions and voice overs are integrated.

Implement Controls
All basic player controls for both the main menu and players in game.

Auto-Installer
Delivered with the finished game build.

Task Tiers
Scope for Bullpup Games divides task priority into four categories: Tier 1, Tier 2, Tier 3, and Tier 4. Bullpup Games accomplishes tasks in
tiered order. Bullpup Games does not make progress through a Tier without completing all tasks in a previous Tier. Within each Tier,
individual tasks are prioritized. If the project ends in the middle of a Tier, at least the most important tasks from the Tier are completed first.

Tier 1 - Bare
Minimum
Project

This is required before the product before the deadline. Without Tier 1, the game does not ship.

Tier 2 - Internal
Goals

This is everything that Bullpup Games wants to accomplish before shipping the game. Without Tier 2, the game loses its
unique identity.

Tier 3 - Stretch
Goals

This is everything Bullpup Games would like to have in the game before the deadline, but they are bonus features and
the game can stand on its own without them.

Tier 4 - Wish
List

All the other tasks that would also be nice to have, but will not be completed before shipping. The tasks assigned as
being Tier 4 sometimes shift places with tasks in Tier 3 and Bullpup Games completes milestones.

End Product (Tier 1)
Gameplay

Server-side blueprints containing the following functions:
Player joins or quits game
Player spawns in game as actor

https://wiki.smu.edu/download/attachments/87457942/UE4_CTF_Project_Requirements%20-%20C25%20-%20Reviewed.docx?version=1&modificationDate=1455697475000&api=v2


Player dies and respawns
While a player is dead they are a floating spectator
Core capture-the-flag mechanics
Game score, player/team statistics
Mechanics

Running
Jumping
Firing

Primary
Secondary

Reloading
Gun Swapping
Picking up ammo
Picking up consumables
Picking up flag
Capturing flag
Returning flag
Game Objects

Player character
Flask (standard flag)
Crate (variant flag)
Pistol
Tommy Gun
Tommy Gun Ammo
Shotgun
Shotgun Ammo
Health Pickup
Speed Pickup

HUD & UI

Player in-game HUD
Ammo Count
Current Weapons
Health
Flag Status
Score

Menu Systems

Main Menu
Multiplayer Lobby Menu

Host Game
Join Game
Options Menu
Credits Screen

End Product (Tier 2)
Gameplay

Reloading Animations
Weapon Swapping Animations
End of game score screen
Death Animation on death
Character Voiceovers
Walking sounds on different materials
Different bullet holes on different materials

HUD & UI

Directional Damage Feedback
Score Screen

Tracks Kills
Track Deaths
Track Scores (When you capture a flag)

Visual Status effects
Player names and health on hover
Global UI Notifications
Scrolling status
Pause Menu

Audio Options



Quit Game

Menu Systems

Player Names
Options menu

Fullscreen
Audio Options

Principle Risks

Platform Risks
Players playing on their own computer need to have good enough specs to run our game. Plans for a low/medium/high quality mode is
currently Tier 3.

Engine Risks
Due to the short development schedule, the faculty/stakeholders advised teams to avoid making custom animations. All animations must be
done with the existing character rig, and thus any custom reload animations must be considered Tier 2 or 3 features. Characters currently
hold each gun with two hands.

In general, Bullpup Games is also at the mercy of the Unreal Engine development team. The team has decided to stay with Version 4.10.2 for
the entire project. As such, any existing engine bugs with this version are a risk.

Middleware Risks
There should be no middleware risks since Bullpup Games creates all assets in-house and does not intend on buying anything from the
Unreal Store.

The team derives technical details from Blueprints built into the Unreal Engine as well as Darwin, the prototype game created by Professor
Skinner. It is pertinent that the programming team becomes familiar will all aspects of Darwin.

Other Principle Risks
Cel shading and the artistic direction in general is contingent on whether or not the programming team can deliver the shading effect within
the timeline. Currently, the programming team can recreate crude version of the cel-shading effect. The team agrees to wait until Tier 2 to
iterate this post-processing effect and conduct further gameplay tests.

Deliverables
Consult the  for a list of programming deliverables.Asset Database

System Requirements

Target System
Bullpup Games has chosen 4 as a benchmark for ’s system requirements:Fallout For the Family

Minimum

Processor: Intel Core i5-2300 2.8 GHz/AMD Phenom II X4 945 3.0 GHz or equivalent

Video Card: NVIDIA GTX 550 Ti 2GB/AMD Radeon HD 7870 2GB or equivalent

Memory: 8 GB

Operating System: Windows 7/8/10 (64-bit OS required)

https://docs.google.com/spreadsheets/d/1Wr-ouQB31QHS2m1edesMJNU8Y-eF-G5D4Sf8sKxZDDw/edit#gid=345899683


Recommended

Processor: Intel(R) Core(TM) i7-4720HQ CPU @ 2.60GHz

Video Card: NVIDIA GeForce GTX 980M

Memory: 16 GB

Operating System: Microsoft Windows 8.1 Professional Edition (build 9600), 64-bit

Display Maximum Resolution: 1920 x 1080

Development System
Processor: Intel(R) Core(TM) i7-4720HQ CPU @ 2.60GHz

Video Card 1: NVIDIA GeForce GTX 980M

Video Card 2: Intel(R) HD Graphics 4600

Memory: 16 GB

Operating System: Microsoft Windows 8.1 Professional Edition (build 9600), 64-bit

Display Maximum Resolution: 1920 x 1080

Resource Budget

Frame Time Budget
For a real-time app running at 60 frames per second (or a minimum of 30), we will have at most 16 milliseconds (or 33) per frame of total
operating time (per thread, maximum, best case).

The frame time budget breaks down as follows:

Description  milliseconds

Game Logic 2

Player Logic 1

Server Communications 5

Render Environment 3

Render Players 1

Render Shaders 1

Render UI 1

Render weapons (first-person) .5

   

Total 14.5

Memory Utilization Estimate
For the Family runs on 1 GB of memory, with the following component breakdown:

Description Bytes

Mob Player Character 50MB

Pistol Weapon 25MB

Tommy Gun Weapon 25MB



Molotov Launcher Weapon 25MB

Arms / Hands 5MB

Environment 150MB

Audio 100MB

3D character models 175MB

Particle systems 20MB

   

Total 575MB

Assets Budgets Estimate
The theoretical maximum number of visible polygons per frame (at 30 frames per second) is 100k triangles, broken down into the following
components:

Description Triangles

Mob Player Character 10K

Pistol Weapon 5K

Tommy Gun Weapon 5K

Third Weapon (Molotov Launcher) 5K

Arms / Hands 1K

Environment 40K

   

Total 66K

Art Assets Budgets Estimate
Texture size limit: 8192 x 8192

Each environment assets:

Max 1K triangles
At most player will see 40 different static meshes on-screen

Environment:

Max number of dynamic lights with shadows 4

Technology Sources

Acquired

Software
Name

Description

Unreal Engine 4 Video game engine created by Epic Games. Used to build the core game and integrate all assets created in other
programs.

Art Creation



Software Name Description

Adobe Photoshop Raster graphics editor

Autodesk 3DS Max 3D graphics editor (models)

Autodesk Maya 3D graphics editor (animations)

Crazybump Imaging tool used to create normal / bump maps for textures

Mudbox Sculpting tool to create hi-res models and concepts

Level Design

Software Name Description

Adobe Photoshop Raster graphics editor

Adobe Illustrator Vector graphics editor

Autodesk 3DS Max 3D graphics editor (models)

Software Engineering

Software Name Description

Microsoft Visual Studio Software used to edit C++ code used in Unreal Engine 4

Audio

Software Name Description

Audacity Audio recording and editing software

Miscellaneous

Software Name Description

Perforce Version Control software, used to managed team-wide synchronous work

Swarm A program used to decrease build times in Unreal Engine 4 by distributing the compilation work to all machines within
the system

Microsoft Word Word processor used to for major project management materials

Microsoft Excel Spreadsheet software used to track and plan sprints

Microsoft
PowerPoint

Slideshow software used for team presentations

 

Components
All Blueprints and descriptions can be found on the .Asset Database

Software Configuration Management

Naming Convention

https://wiki.smu.edu/pages/viewpage.action?pageId=87457935


All filenames must conform to those printed in the Asset Database
Use CamelCase when naming files
All filenames must only contain alphanumeric characters
No spaces in filenames
Use underscores to separate between DataType, Name, and Asset Type

For example: “T_HealthBar_Diffuse”
The Asset Type only needs to be denoted if there is more than one asset type to differentiate between

For assets with more than one variation, use sequential numbers to denote different versions
Use 1 as the first variation. If there is no second variation, you do not need to use a number.
Names begin with a noun, followed by up to two modifiers, then version number. The modifiers should be in order of importance and
should be consistent amongst other similar files. [Noun][Modifier][Modifier][#]

For example: “M_CarSmallBlack2”

Category/File Formats

Category Kind of file

T _ Textures

Example: T_HealthBar_Diffuse

M_ Materials

Example: M_CarSmallBlack2

BP_ Blueprints

LVL_ Levels

SK_ Skeletal mesh

SM_ Static mesh

A_ Animations

SFX_ Sound effects

CUE_ Sound cues

MUS_ Music

P_ Particles

HUD_ HUD widgets

FileType_ Catch-all for any type not included above. Usually there are very few of these.

Example: GameMode_CTF

Build Plan
The Lead Programmer (Clay Howell) is the build master. Every week on Saturday, at the end of core hours, the build master makes a clean
build of the game in its current state. The build master ensures there are no critical bugs or problems with the build before submitting it to
Perforce, in a folder under the root directory name ‘Builds’.

At the end of each milestone, a milestone build is made, and is a playable demonstration of the project at that point in time. All team members
must play and test the milestone builds before the lead programmer submits the build to Perforce.

Backup Routines
In case Perforce were to fail, the lead programmer makes a local copy of all the contents of the team’s Perforce repository on an external
hard drive. This backup is made every Saturday at the end of the work day.

PC Images
 

Art Level Design Programming General



1.  
2.  

1.  
2.  

1.  

Autodesk Maya

2016

Adobe Photoshop

2015 v8.1

Microsoft Visual Studio

2015

Unreal Engine 4

4.10.2

Autodesk 3DS Max

2016 18.0 sp1

Adobe Illustrator

2015

  Microsoft Word

2013

Adobe Photoshop

2015 v8.1

Autodesk 3DS Max

2016 18.0 sp1

  Microsoft Excel

2013

Adobe Illustrator

2015

    Microsoft Visio

2013

      Microsoft PowerPoint

2013

      Audacity

2.1.1

      Perforce

P4V 2014.3

      Cisco AnyConnect VPN

      Swarm

      Slack

 

Personal Backups

Team members encountering issues with Perforce must immediately talk with the lead programmer. The goal is to avoid the loss of significant
progress on work and to facilitate collaborative work with Perforce.

During the workday

Team members will regularly back up all the content that they work on for .For the Family

When the workday starts, all team members will Get Latest from Perforce
After a team member completes a task, they are expected to commit that content, and update the respective documentation and
scrum boards

At the end of the workday

Team members back up all the content that they work on for .For the Family

Always commit any work you’re currently working on before you leave core hours
Do not have files checked out for long periods outside of core hours

Per Milestone

A current working build of the game will be uploaded to Perforce

Coding Standards

Use OnTick as little as possible (it’s costly)
Put all code inside comment boxes
Make liberal use of comments on individual functions themselves
Do not cross connection lines unless absolutely necessary
Keep connection lines organized, keep functions aligned
Try to be consistent with blueprint organization across all blueprints

All code adheres as strictly as possible to the UnrealScript coding standards.

Version Control
How to set up a new workspace:



1.  
2.  
3.  
4.  

1.  
2.  
3.  
4.  

Click the workspace drop down
Click ‘New Workspace…’
Change the workspace name to [username]_BullpupGames
Paste this into the workspace mappings:

-//depot/... //[username]_BullpupGames/...

//depot/C25/Students/[username]/TGP2/ForTheFamily... //[username]_BullpupGames/...

//depot/C25/TGP/TGP23/ForTheFamily/... //[username]_BullpupGames/...

-//depot/C25/TGP/TGP23/ForTheFamily/Config/... //[username]_BullpupGames/Config/...

-//depot/C25/TGP/TGP23/ForTheFamily/Intermediate/... //[username]_BullpupGames/Intermediate/...

-//depot/C25/TGP/TGP23/ForTheFamily/Saved/... //[username]_BullpupGames/Saved/...

-//depot/C25/TGP/TGP23/ForTheFamily/Saved/* //[username]_BullpupGames/Saved/*

//depot/C25/TGP/TGP23/ForTheFamily/Content/... //[username]_BullpupGames/Content/...

        5. Click ‘OK’

How to get the current data off the Perforce Server

Open the Perforce Visual Client
Open up your current workspace
Right click the root file for the repository
Choose ‘Get Latest Revision’

Perforce File Structure

Bullpup Games uses the following file structure in Perforce:

Config
Content

Animations
EXP

Blueprints
Enums
EXP
GameModes
GameplayEntities

Projectiles
Pickups
Player
UI

Collections
FirstPerson

Animations
Audio
Character

Materials
MaterialLayers
Mesh
Textures

FPWeapon
Materials

MaterialLayers
Mesh
Textures

Meshes
Textures

FirstPersonBP
Blueprints
Maps

Geometry
Meshes

HUD
EXP

Levels
EXP

Materials
EXP



World
Meshes

SkeletalMeshes
EXP

AnimCharacter
Animations
SkeletalMeshes

StaticMeshes
Music

EXP
Particles

EXP
SoundEffects

EXP
Splash
StarterContent

Architecture
Audio
Blueprints

Assets
HDRI
Maps
Materials
Particles

Materials
Props

Materials
Shapes
Textures

Textures
EXP
World
Intermediate

Config
CoalescedSourceConfigs
ReimportCache

Originals
Concepts
Meshes

SkeletalMeshes
StaticMeshes

Production
Saved



1.  
2.  
3.  
4.  

Sample SVN Repository

Perforce Tutorial

Connect to the Network Repository

Open Perforce Visual Client
Enter SMU username and password
Make sure you are using [user]_BullpupGames for your workspace
You can change your workspace by clicking the drop down at the top of the repository



1.  
2.  
3.  
4.  

1.  

2.  

Workspace dropdown menu

Initial Check Out from the Network Repository into the Local Working Directory
Repository

Find the document that you want to work on in the repository
Right Click the file and click ‘Check Out…’
Confirm the check out by click ‘OK’
The file should now have a red checkmark in the icon on the left

Check Out command

Updating to the Latest Files from the Network Repository

With Perforce Visual Client open, click on the Workspace tab at the top next to the Depot tab



2.  
3.  

1.  
2.  
3.  
4.  
5.  
6.  

7.  

Right click the root folder and choose ‘Get Latest Revision’
Alternatively you can also left click the root folder, then click the at the top under the toolbar labeled ‘Get Latest’

Get Latest Revision command

Adding a Single File to the Local Repository

If you’ve create a new file within the your Bullpup Games workspace, you need to add it to Perforce so it can track the file and all changes
made to the file

First, make sure you’re on the Workspace tab and not the Depo tab
You should see the file in your repository but the icon will be faded, indicating the Perforce is not currently tracking the file
Right click the file and choose ‘Mark for Add…’
In order to confirm this action, you must navigate to the right side of the client where it shows your pending items
If you do not see your pending items, click the tab with the red triangle called Pending
Select the change list that contains the file add action or select just the add action under the change list if there are multiple actions
listed under the change list
Right click the selected item and choose ‘Submit…’

 Submitting a local file to Perforce repository



1.  
2.  
3.  
4.  
5.  
6.  

1.  
2.  
3.  
4.  
5.  

Committing Files to the Network Repository

When your Perforce Visual Client is open, on the right will be a list of all pending files ready to be checked in to Perforce
Right click the change list you want to commit to Perforce and choose ‘Submit…’
A confirmation box will then appear
Fill out the description
Uncheck any items you do not want to commit
Click ‘Submit’

Submission confirmation box

Handling Version Conflicts

When a conflict occurs, the person who is checking in the object last is at fault
Find the person who checked in the asset before you, and ask them what was changed
If important work was done, revert your work, get latest on the assets, and the redo your work
If the person before you confirms that the work they did was not important, you can overwrite their work with your work
To prevent conflicts, submit your work often, at least once an hour

Quality Assurance

Component Testing

When a developer believes a component is ready to be implemented in the game, they must first test the component’s functionality within the
programming zoo in their local editor. The developer then tests the component over networked play in order to determine if it works under a
range of likely circumstances. After the component is proven to work locally, the developer moves the asset to the appropriate folder in
preparation for integration testing.



Integration Testing

Integration testing occurs once per week, during which the entire team suspends all work and playtests the current build, with specific
attention to the new components and their interactions with all other assets in networked play.

Any and all components successfully tested must be moved to the appropriate folder and committed to Perforce according to the correct
naming convention outlined in the Software Configuration Management section.

Useful Tutorials
https://wiki.smu.edu/display/guildhall/Networking

https://docs.unrealengine.com/latest/INT/Engine/Audio/index.html

https://wiki.smu.edu/pages/viewpage.action?pageId=86311344

 

 

https://wiki.smu.edu/display/guildhall/Networking
https://docs.unrealengine.com/latest/INT/Engine/Audio/index.html
https://wiki.smu.edu/pages/viewpage.action?pageId=86311344

	Technical Design Document (TDD)

